1.前言
业界对高敏感度、高特异性、低成本、易携带的生物传感器的研发兴趣有增无减。这些要求对于医疗、食品、制药、临床等应用领域具有重要意义。高敏感度和高特异性是生物传感器的核心要素,通过整合适合的变送方法与适合的生物过程,例如,免疫分析法和/或核酸杂交,可以实现高敏感度和高特异性。生物传感器概念的核心是把特定生物识别事件转换成电信号并输出。生物识别事件是通过一个涉及使用适合的标记法的生物过程,来识别分析物(抗原或DNA序列)与其特定识别元件(抗体或寡核苷酸)之间发生的特定生物事件。标记物可以是磁性、放射性、酶、荧光、电化或电介质物质。应根据特定应用的功能选择适合的标记物。
在这种情况下,使用磁性颗粒作为免疫分析法的标记物(夹心式免疫分析法和竞争性免疫分析法均使用这种方法[3])有潜在优势,这与其极高的稳定性、低成本、无毒、易感测有关。
通过选用适合的标记法,可直接量化磁珠数量,无需再为获取可测量的信号而执行其它操作。现有多种不同的磁珠感测方法,例如,磁阻传感器[4]、微机械悬臂装置 [5]、超导量子干涉仪[6]、自旋阀[7]、霍尔探针[8]、磁通门磁力计[9-11]。另一种感测方法是把样品置于线圈内或附近,线圈同时还兼作致动器和传感器。微射流系统是线圈被用作致动器的例子[12]:在微射流系统的通道中,电感器用于分离磁性颗粒上固定化的生物分子。
一个新方法是使用磁珠进行量化,利用磁珠磁芯来影响初级线圈磁场的空间分布,这样,可以使用一个次级线圈感测与磁性颗粒链接的生物分子。事实上,样品中磁性颗粒的存在可改变次级线圈电感。使用线圈充当感测结构有一个重要的优点,即关系到能否实现集成结构。与宏观电磁阀相比,采用硅技术集成电感元件有很多潜在优点,其中包括与制造成本、产品良率和平面电感器件可再制性相关的优点。此外,产品尺寸最小化可以大幅降低被分析物质的取样量,降低每个分析实验的试剂成本。高集成度还为开发更复杂的感测系统带来一个有趣的观点,例如,可同时感测多个物种的传感器阵列。
这种磁性生物传感器的感测敏感度完全取决于感受器(抗体)与目标分子(抗原)的亲和性、线圈参数、感测电路的稳定性,最重要地是,磁性颗粒的特征。
如前文所述,因为与感受器链接的磁性颗粒的存在,电感方法可通过测量线圈电感的变化来识别目标分子。
可用多种方法测量电感变化。在参考文献[13]中,作者提论述了如何利用相关设计、有限元素法仿真和采用硅技术制造集成电感元件来提高传感器的敏感度。该方法是用一个阻抗分析仪测量电感。为提高传感器对磁性颗粒存在的敏感度,在线圈区域的衬底背面局部沉积一个磁层。
本文讨论一个新的电感生物传感器。这项成果是参考文献[21]的传感器在参考文献[22]的仿真结果基础上进化的结果。准确地讲,该传感器架构经过优化设计,主要考虑次级线圈相对于初级线圈中心的位置、线宽和线的间隔。此外,我们还开发一个新的信号调理产品,使传感器响应性能高于参考文献[21]描述的传感器,因为存在两个感测系统,可完全表征两个不同的工作区,本文以下章节给予详细介绍。
本文主要内容如下:下一章即第二章介绍传感器工作原理以及布局设计和制造技术;一套验证磁特性的实验方法。第三章先是简要介绍信号调理电子元件和所用磁珠,然后介绍并探讨集成双感测系统的生物传感器的全面表征功能。
2.电感式生物传感器
2.1.工作原理
该生物传感器由一个初级线圈和两对次级线圈组成,构成两个不同的感测系统,如图1所示。在每个感测系统内,两个次级线圈的绕线方向相反,以差分方式相连。在每对次级线圈中,只有一个线圈对磁性颗粒敏感;另一个线圈可去除变压器总输出中的寄生效应。初级线圈由交流信号驱动,产生一个与所有次级线圈相关的磁场。
?
图1.生物传感器结构示意图:黑色部分是初级线圈;绿色部分是大感测系统;红色部分是小感测系统。
?