随着用电设备对供电品质的不断提高,以及对特殊场合、特殊地理环境的供电,使得接触式电能传输方式不能满足实际需要。近年来,有关无线充电技术的研究不断增多。
无线充电系统会发射电磁波能量,当发射器上没有放充电装置时也会发射能量,造成能源浪费和辐射污染。当发射器上放金属异物,电磁波对其加热,轻则烧毁装置,重则发生火灾。因此,无线充电系统需要具备对受电端目标物的辨识功能,当正确的目标物放置在发射器上才进行充电。
常用的身份识别方法有:1)磁力激活,在受电端上装一个磁铁,当发射端感应到磁力后发送能量;2)通过射频识别(RFID)加强电路安全;3)感应线圈上的资料传送,利用原副线圈内的电力传送,包含资料码一起传送,这种方法最安全也最难完成,因为感应线圈上有高能量的电力传输,另外还包含了系统的噪声与负载电流变化的干扰,如何有效地传送资料码是一大难题。为此,在原边电压采样电路的基础上,设计了一种低频的身份识别电路。
1 QI的无线充电通信标准
无线充电联盟(WPC)标准下,无线传输的功耗仅为0~5W。达到这一标准范围的系统在2个平面线圈之间使用电感耦合将电力从电力发送器传输给电力接收器。原副线圈之间的距离一般为5mm,输出电压调节由一个全局数字控制环路负责,这时电力接收器会与电力发送器通信,并产生功耗。该通信是一种通过反向散射调制从电力接收器到电力发送器的单向通信。在反向散射调制中,电力接收器调整负载,从而改变电力发送器的电流消耗。对这些电流变化进行监控,并解调成2个设备协同工作所需的信息。
通信协议包括模拟、数字声脉冲(ping)、身份识别、配置和电力传输。电力接收器放置在电力发送器上时出现的典型启动顺序如下:
1)来自电力发送器的模拟ping检测到对象的存在。
2)来自电力发送器的数字ping为模拟ping的加长版,并让电力接收器有时间回复一个信号强度包。若该信息强度包有效,则电力发送器会让线圈保持通电并进行下一步骤。
3)身份识别和配置阶段,电力接收器会发送一些数据包,对其进行身份识别,并向电力发送器提供配置和设置信息。
4)在电力传输阶段,电力接收器向电力发送器发送控制误差包,以增加或减少电力。正常运行期间,每隔约250ms发送控制误差包,而在大信号变化期间每隔32ms发送一次。另外,在正常运行期间,电力发送器每隔5s发送一次电力包。
5)为了终止电力传输,电力接收器发送一条“终止充电”消息或者1.25s内不进行通信,使电力发送器进入低功耗状态。
2 原副线圈耦合系数对原边LC电压的影响
由RLC串联谐振电路得
当原边感应电路与副边感应电路结构存在过大的气隙时,不仅副边线圈的能量接收率变差,且副边电路和原边电路距离较远时,副边电路反射电阻变小,Q值增大。由RLC串联谐振电路可知,发生谐振时电感电压是输入电压的Q倍,当副边感应电路结构远离原边电路时,Q值增加,电感电压随之增大,所以可以通过检测电感电压值来判断副边感应结构是否远离原边感应电路。
除了气隙会影响原副线圈的耦合系数外,补偿电容的大小也会影响耦合系数。补偿电容与电路耦合系数的关系如表1所示。当改变副边电路的补偿电容时,谐振频率也会改变,导致电路的原副线圈的耦合系数也跟着改变,电路的效率也作相应的改变。当谐振频率接近开关频率时,原副线圈的耦合系数大,电路效率高,电感峰值电压小。当电路只有副边补偿电容改变时,电感的峰值电压的大小反应了副边电路补偿电容的改变情况。
表1 补偿电容与电路耦合系数的关系
放在电力发送器上的物体有可能是耦合系数较高的物体,如金属线圈、无线充电接收模块等,也有可能是耦合系数较低的物体。对于耦合系数低的物体,不需要对其进行身份识别,因为此时无线充电器充电效率低,原边电流大,LC电路电压高,电路在检测到一定时间的连续高电压状态后,将开关管关断,进入待机状态。对于耦合系数较高的物体,必须对其身份识别,防止误充电。
更多无线充电技术解析/应用案例/市场分析,竟在[无线充电技术应用沙龙],报名戳这!