电子镇流器对荧光灯性能的影响
Electronic Ballast(EB) Effect on Performances of Fluorescent Lamp(FL)
辽宁工学院陈永真曹永刚郭涛王智(锦州121001)摘要:提出镇流器与荧光灯配套工作基本要求,指出其不足,分析电子镇流器对荧光灯工作的影响、灯管故障对电子镇流器的影响和电子镇流器存在的问题,提出优质电子镇流器的基本性能要求。
Abstract: Described fundamental requirements of the ballast and the fluorescent lamp form a complete set work.Analyzed EB effect on FL work,tube of FL effect on the ballast and EB existed defects,raised high- quality EB fundamental performance requirements.
关键词:预热启辉不启辉保护开关寿命波形系数
Keywords:Preheat start, ProtecTIon of no start, Life of switch, Waveform factor
荧光灯是一种适用交流供电环境下的电光源,它要求灯丝预热后启辉以确保其使用寿命。荧光灯、电感镇流器、启辉器配套使用基本上满足了这一要求,而且当灯管由于各种原因(特别是在不能激活)不能启辉状态下,镇流器不致过热损坏。电感镇流器的缺点是:闪烁,容易造成眼睛疲劳,启辉器寿命短,每次点燃平均需三至五次的启辉过程,电压偏低或环境温度过低时启辉困难,功耗大,镇流器温升高。因此随着电子技术的发展,电子镇流器应运而生。
1电子镇流器的启辉方式及其对灯管开关寿命的影响
为减小器件尺寸可将电子镇流器做成高频逆变器,开关频率一般在30~50kHz,镇流电感的储能较电感式镇流器小得多,电感释放的能量不能击穿灯管,故采用目前流行的LC谐振方式产生足够高的谐振电压击穿灯管。使灯管启辉,点燃后由电感镇流。
采用LC谐振启辉方式可使灯管在灯丝没有加热状态下强行击穿启辉,也就是“即点即亮”。这种“即点即亮”的功能似乎用起来很方便,但由于灯丝没有加热而不能发射电子去中和汞离子,使在高压电场作用下的汞离子轰击灯丝,使灯丝表面的有利于发射电子的物质被轰击飞溅,违背灯丝加热后再加高压启辉的基本原则。在灯管点燃前的启辉期间,由于LC谐振回路Q值较高(10~30)。灯丝冷态电阻低(总计不足10Ω),故谐振电流将达到正常工作电流的10倍左右。开关管、谐振电容将承受巨大的电流,电流冲击是电子镇流器故障率高、寿命短的主要原因之一。因此电子镇流器必须具有灯丝预热后启辉的功能。荧光灯灯丝预热的基本要求是:在电子镇流器通电最初2秒左右的时间对灯丝预热到600℃~800℃(在光线较暗处可见灯管两端开始发红)后在灯管两端加LC谐振高压击穿灯管,使其点燃。由于灯丝预热后具有发射电子的能力,可在灯丝加热时将汞离子中和,使其停止加速,在最大程度上减小对灯丝的轰击,延长灯丝寿命。在灯丝预热过程中也不应有辉光放电。这样做以后,灯管的开关寿命一般可以超过20万次,最低也能超过10万次。从而消除了以往每一次点燃减少使用寿命半小时到一小时的传统观念,使荧光灯的通断基本上不再影响其使用寿命。欲实现这种效果,必须优选预热方式。
启辉方式如采用PTC元件并联在谐振电容两端的方式,使电子镇流器通电后,利用PTC元件冷态的低电阻值降低电感电容谐振回路的Q值,从而降低电容两端的电压,使灯管不被击穿启辉,而处于预热状态。当PTC元件通过电流被加热到转折温度时,由低阻状态变为高阻状态,使谐振回路的Q值升高,电容两端(即灯管两端)电压升高使灯管被击穿启辉。从理论上讲,这种预热启辉方式可行,但实际应用中,由于PTC元件处于高温状态,因此其可靠性得不到长期保证,而且当环境温度变化范围很大时,高温环境下PTC元件将起不到对灯管预热启辉的作用,同时也容易因灯管冷启辉时的过电压(高于正常启辉时数倍)造成PTC的击穿。而在低温环境又因加热的电功率不足,使PTC元件温度达不到转折值,常使灯管不能被击穿点燃或点燃后又回到启辉状态,而不能维持正常照明。由于以上诸原因,在实际应用中常出现PTC元件的损坏,甚至先于灯管而损坏,在总的效果上对灯管的开关寿命改善不十分明显。我们认为低应力预热启辉方式最好,即在预热过程中电子镇流器的各处应力均不高于正常启辉状态,输入功率随灯丝的温度上升而缓慢增加,并在灯丝被加热到具有发射电子能力时,将LC谐振高压加到灯管两端使灯管被击穿启辉,由于灯丝被预热,荧光灯管的启辉电压明显降低(150V~290V),这样不仅灯丝发射电子可中和被电场加速的汞离子,而且由于灯管击穿场强较灯丝冷态灯管击穿场强小得多,汞离子速度小,进一步减小汞离子(原子)对灯丝的轰击,使灯管寿命的延长得到保证。
2灯管故障对电子镇流器的影响
在电感镇流器与荧光灯配套时,随着点燃时间的增长和开关次数的增加,灯管中灯丝表面发射电子物质由于汞离子的轰击作用飞溅而减少,灯丝发射电子能力减弱造成灯管电压升高,电流减小,最终不能维持灯管电压高于启辉器辉光放电电压,使启辉器反复动作,灯管不能正常点燃,即灯管寿命终了,这时只能更换新灯管才可恢复工作。
电子镇流器与荧光灯配套使用时,由于电子镇流器是采用谐振式启辉方式,灯管点燃后,导通的灯管并联在谐振电容两端使谐振回路Q值急剧下降,这时电容的端电压为灯管的工作电压。当灯管寿命后期,由于前述原因,使灯管电压增加,在这种状态下,谐振电容端电压和电流随之增加,灯丝电流增加,从而缓和了灯丝发射电子不足的现象,但灯功率增加。
当灯管寿命终了时或由于其他原因可能会出现灯管不能被激活启辉,等效谐振电感、谐振电容将流过正常工作电流的10倍甚至更大的电流,如灯丝在很短的时间内不能烧断,则上述元件特别是开关管将被热击穿,从而使电子镇流器损坏。
如荧光灯两端灯丝发射电子不平衡时,将出现程度不同的“整流”现象。当这种“整流”现象严重时,将使两个串联的输入滤波电解电容器分压输出点电位发生偏移,可能造成其中一个电容器上的电压超过其额定电压而被击穿,使电子镇流器损坏。
3电子镇流器应走出误区
目前很多电子镇流器制造商为降低生产成本,生产的电子镇流器无灯丝预热功能,或即使有预热功能但多形同虚设。极大地影响灯管使用寿命和电子镇流器的使用寿命。不仅造成资金和资源上的极大浪费,而且废弃的旧灯管将造成汞及荧光粉对环境的污染。由于电子镇流器大多没有在灯管不能激活启辉时的自身保护功能,致使灯管寿命终了时必然烧坏电子镇流器,形成坏一只灯管,同时也坏一只电子镇流器的现象。为提高电子镇流器的功率因数,高功率因数的电子镇流器大多采用如图1所示的整流电路,功率因数可达0.96,但整流输出电压纹波达50%,见图2。
一般恒压整流输出电压下,电子镇流器与荧光灯配套使用时,灯管电流波形系数约为1.4~1.5,采用图1的整流电路后实验结果为灯管电流波形系数增加30%,为确保灯管电流波形系数小于国家标准GB10682-89中规定1.7的要求,必须使恒压整流输出供电下的电子镇流器与荧光灯配套时灯管的波形系数小于1.4。实际上设计合理的电子镇流器,电流波形系数一般在1.35。
一些电子镇流器制造商为了减小电子镇流器的损坏率,灯管输入功率常常小于GB15143-94,GB15144-94中的规定,甚至有的电子镇流器的输入功率仅为灯管额定功率的80%,这种灯管的降额使用方法,不仅使灯管的光效降低一个档次以上,同时也降低了灯管使用寿命。
图1高功率因数电子镇流器的电路
(a)交流电压、电流波形
(b)直流电压纹波图2电子镇流器的电压、电流波形
图2电子镇流器的电压、电流波形
综上所述电子镇流器的误区,导致灯管的使用寿命明显短于使用电感镇流器的情况,并且坏一个灯管就烧坏一个镇流器,丧失了荧光灯寿命长的优点,而且由于很多电子镇流器没有加装保险丝,造成了电气事故和电气火灾的隐患。
性能优良的电子镇流器应具备:灯丝预热功能;灯管不启辉保护功能和抗“整流”效应功能;并使电子镇流器输入电流的谐波成分满足IEC555-2标准。这样不仅电子镇流器可靠性得到保证,而且由于采用了预热启辉方式和约1.4的灯管电流波形系数,使荧光灯使用寿命明显高于电感镇流器配套的荧光灯,也明显高于制造商标定的使用寿命。