您现在的位置是:首页 > 电源

开关电源控制芯片M51995及其应用

2020-08-11 09:03:16

开关电源控制芯片M51995及其应用

 

 

摘要:M51995A是MITSUBISHI公司推出的专门为AC/DC变换而设计的离线式开关电源初级PWM控制芯片。本文详细描述它的工作原理并给出典型应用。

Abstract: M51995A is a off- line SMPS's primary PWM control chip of specific design for AC/ DC

Conversion by MITSUBISHI . This paper described in detail its work principle and showed typical applicaTIons.

关键词:振荡PWM比较锁存电流限制断续

Keywords:OscillaTIon, PWM comparison lock, Current limit, DisconTInuity

1引言

  M51995A是一专门为AC/DC变换设计的离线式开关电源初级PWM控制芯片。该芯片内置大容量图腾柱电路,可以直接驱动MOSFET。M51995A不仅具有高频振荡和快速输出能力,而且具有快速响应的电流限制功能。它的另一大特点是过流时采用断续方式工作。芯片的主要特征如下:

  ?500kHz工作频率;

  ?输出电流达±2A,输出上升时间60μs,下降时间40μs;

  ?起动电流小,典型值为90μA;

?起动电压和关闭电压间压差大:起动电压为16V,关闭电压为10V;

?改进图腾柱输出方法,穿透电流小;

  ?过流保护采用断续方式工作;

?用逐脉冲方法快速限制电流;

  ?欠压、过压锁存电路。

2管脚排列及说明

  管脚排列见图1。

各引脚定义如下:

  COLLECTOR:图腾柱输出集电极

  Vout:图腾柱输出

  EMITTER:图腾柱输出发射极

  VF:VF控制端

  ON/OFF:工作使能端

  OVP:过压保护端

  DET:检测端

  F/B:电压反馈端

  T-ON:计时电阻ON端

  CF:计时电容端

  T-OFF:计时电阻OFF端

  CT:断续方式工作检测电容端

  GND:芯片地

  CLM-:负压过流检测端

  CLM+:正压过流检测端

Cjh1.gif (5940 字节)

图1M51995AP管脚排列

Cjh2.gif (20719 字节)

图2M51995A的原理框图

  Vcc:芯片供电端

3工作原理

  M51995A的原理框图如图2所示。它主要由振荡器、反馈电压检测变换、PWM比较、PWM锁存、过压锁存、欠压锁存、断续工作电路、断续方式和振荡控制电路、驱动输出及内部基准电压等部分组成。

  (1)振荡器

  振荡电路的等效电路如图3所示。CF电压由于恒流源的充放电而呈三角波。在正常工作时

Cjh3.gif (7492 字节)

图3振荡器等效电路

充电电流为I1=UT-on/Ron

放电电流为I2=UT-off/Roff+UT-on/16Ron

振荡周期为

T=(UOSCH-UOSCL)CF/(I1+I2)

其中(UOSCH-UOSCL)为三角波的峰峰值,UOSCH≈4.4V,UOSCL≈2.0V,UT-on≈4.5V,UT-Off≈3.5V。芯片输出最大脉宽为三角波的上升时间,而三角波的下降时间则为死区时间。当发生过流时,断续方式和振荡控制电路开始工作,此时T-off端电压依赖于VF端电压,振荡器的充电电流同正常工作时一样,

充电电流为I1=UT-on/Ron

放电电流为

I2'=(UVF-UVFO)/Roff+UT-on/16Ron

振荡周期为

T=(UOSCH-UOSCL)CF/(I1+I2)

其中UVF为VF端电压,UVFO≈0.4V,

Cjh4.gif (2530 字节)

图4正激式变换器中VF端的应用

如果UVF-UVFO<0, 则 UVF- UVFO="0;"

如果UVF-UVFO>UT-Off≈3.5V,则UVF-UVFO=UT-Off。所以当UVF>3.5V时振荡器的工作和没有发生过流时一样。通常使VF端电压正比于变换器的输出电压,这样当发生过流而使输出电压变低时死区时间也相应变长,从而进一步降低占空比。图4显示了正激式变换器中VF端的应用,这里RC构成低通滤波器;而在反激式变换器中可以对偏置绕组电压进行分压后接到VF端,因为偏置绕组电压正比于变换器的输出电压。

  (2)PWM比较锁存部分

  图5为PWM比较和锁存部分的电路图,由图可知A点电位为

UA=5.8-15.2k&TImes;(500·IF/B/3k)

A点电位与振荡三角波比较后锁存,并与从振荡器输出的控制信号逻辑组合后输出。各点波形如图6所示。故B、C、D、E各点的逻辑关系为

B=D·E,C=B·E=D·E  (3)输出电路

  芯片的输出为图腾柱电路,以驱动MOS管。传统的图腾柱电路具有高穿透电流的缺点,可达1A,这在高频应用时将引起较大的ICC电流和不可避免的IC受热及噪声电压。M51995A使用了改进的图腾柱电路,在不恶化性能的条件下穿透电流约为100mA。

  (4)电流限制电路

  在图6中,如果A点波形和三角波的上升沿相交之前电流限制端CLM+或CLM-的电压超过阈值(+200mV/-200mV),过流信号将使输出截止并且这个截止状态持续到下一个周期。实际上该信号控制

Cjh5.gif (8202 字节)

图5PWM比较和锁存

Cjh6.gif (6554 字节)

图6PWM比较和锁存部分各点波形

的状态在接下来的死区时间里被复位,所以电流限制电路在每个周期都可以起作用,被称为“逐脉冲电流限制”。为了消除寄生电容引起的噪声电压的影响,需要使用RC组成的低通滤波器,如图7所示。

Cjh7.gif (5699 字节)

(a)CLM+的情况(b)CLM-的情况
图7CLM+/CLM-的连接

Cjh8.gif (4482 字节)

图8断续方式和振荡控制电路时序

Cjh9.gif (5193 字节)

图9断续方式工作电路图

  当内部限流电路工作时,断续方式和振荡控制电路开始工作,即输出高电平。图8为时序图,在断续方式和振荡控制电路输出为高电平并且VF端电压下降到低于约3V的临界值时,断续方式电路开始工作。图9为断续方式电路的原理图。当VF端电压高于UTHTIME时,晶体管V导通,CT端电位接近于GND;当VF端电压低于UTHTIME时,晶体管V截止,CT将被充放电。SWA闭合而SWB断开时,CT被120μA的电流充电,SWB闭合而SBA断开时,CT被15μA的电流放电,所以CT端呈三角波。只有在CT端电压上升期才会产生输出脉冲。显然CT端的三角波频率要远远低于开关振荡频率。这样功率电路中包括次级整流二极管在内的元器件可被有效保护,以防过流引起的过热。当断续方式不用时,建议CT端接地。

  (5)辅助功能部分

  DET端可被用来控制输出电压。DET端和F/B端之间的电路与并联型可调电压基准芯片431非常相似,当DET端电压高于2.5V时运放具有吸收电流能力,而当DET端电压低于2.5V时输出为高阻。DET端和F/B端相互具有反相特性,所以建议在它们之间串接电阻和电容以利相位补偿。

  OVP和ON/OFF端子可方便地用来实现过压保护和开关芯片工作。两者都具有迟滞特性。在过压保护及OFF状态下,芯片的工作电流均由起动电路提供。ON/OFF端为低电平时芯片才工作,阈值电压为2.4V。当OVP端高于750mV的阈值电压时芯片进入过压保护状态(OVP)。为了复位OVP状态,须使OVP端电压低于阈值电压或使VCC低于OVP复位供电电压(典型值为9V)。

Cjh10.gif (16263 字节)

图10M51995AP在正激式变换器的中的应用

4典型应用

图10和图11分别为M51995AP在正激式和反激

Cjh11.gif (11330 字节)

图11M51995AP在反激式变换器的中的应用

式变换器中的应用。在正激式变换器中,交流输入经全波整流和平滑滤波后进行开关变换。次级为多组输出,而稳压控制则是对主输出来进行的。采样和误差放大采用431用基准芯片和光耦以提高输出精度和隔离初级和次级电压。过流检测使用电流检测变压器。电源可由外部信号进行开关。Ron推荐为10k到75k,Roff推荐为2k到30k;电源电压推荐为12V到17V;流过R1起动电阻的起动电流推荐300μA以上以稳定起动。