从应用的角度出发,通常把PTC材料的基本特性分为:电阻-温度特性、伏-安特性、电流-时间特性和热特性。 |
|
1.2.1 电阻-温度特性(R-T)
电阻-温度特性通常简称为阻温特性,指在规定的电压下,PTC热敏电阻零功率电阻与电阻温度之间的依赖关系。
lgR(Ω) Rmin : 最小电阻 Tmin : Rmin时的温度 RTc : 2倍Rmin Tc : 居里温度 RTc Rmin
T25 Tmin Tc T(℃)
|
耗散系数δ:热敏电阻器中功率耗散的变化量与元件相应温度变化量之比称为耗散系数,其单位为 W/℃.
耗散系数是表征PTC热敏电阻器与周围媒介进行热交换能力的一个参数, 也是PTC元器件应用中十分重要的参数之一。 在材料配方、工艺一定的前提下, PTC本身的居里温度、升阻比均基本不变, PTC器件的其它性能参数则由其结构、外壳及散热条件决定。耗散系数则是这些条件的综合表现。因此PTC元器件的动作时间、恢复特性等均与耗散系数有关。对于大功率发热件来讲,耗散系数就更重要,它直接影响到功率输出。
当PTC热敏电阻器两端加上电压时,由于功耗。电阻体温度逐渐升高,同时向周围媒质散发热量直至电阻体的温度达到稳定,此时消耗的功率全部扩散到媒质中.电阻器的功耗变化量△P与电阻体的温度变化量△T之比就是耗散系数δ。
耗散系数对于各种加热器件的结构设计十分重要, 只要在器件结构上略加修改便可使电参数大为提高,很多工程师却长期被困扰在PTC材料和配方的研究上,这是十分可惜的。
热时间常数ε:表征元件对周围环境温度反应的快慢,当把PTC元件用作温度传感器时,这个参数十分重要。热时间常数定义为:在零功率条件下,当环境温度突变时, PTC热敏电阻的温度变化了其始末温差的63.2%所需要的时间,用ε表示。
热容量C:使热敏电阻器的温度每升高1℃所需要的热量,称为热容量,单位J/℃,C=εδ