用于MAX7456随屏显示器SPI
摘要:MAX7456随屏显示(OSD)发生器具有SPI™兼容接口,本应用笔记介绍了SPI接口的工作原理,文中还包含在微控制器内逐位模拟SPI接口的控制器C程序。
MAX7456串行接口
MAX7456单通道单色随屏显示(OSD)发生器预装了256个字符和图形,并可通过SPI接口在线编程。通过SPI兼容串行接口可以设置工作模式、显示存储器以及字符存储器。状态(STAT)寄存器、显示存储器数据输出(DMDO)寄存器和字符存储器数据输出(CMDO)寄存器都可读,可以对其进行写操作和读操作。关于MAX7456寄存器及存储器结构的详细信息请参考数据资料和应用笔记4117,"使用MAX7456存储器和评估板文件生成定制字符和图形"。
MAX7456支持高达10MHz接口时钟(SCLK)。图1为写数据时序,图2是从器件读数据的时序。
写寄存器时,拉低/CS可使能串行接口。在SCLK的上升沿从SDIN读取数据。当/CS变为高电平时,数据锁存到输入寄存器。如果传输过程中/CS变高,程序终止(即数据不写入寄存器)。/CS变低之后,器件等待从SDIN读入第一个字节,以确定正在执行的数据传输类型。
读寄存器时,如上文所述,拉低/CS。地址在SCLK的上升沿锁入SDIN。然后数据在SCLK的下降沿从SDOUT输出。
SPI命令长度为16位:最高8位(MSB)代表寄存器地址,最低8位(LSB)代表数据(图1和2)。这种格式有两个例外:
- 自动递增写模式,用于访问显示存储器,是一个8位操作(图3)。写数据前必须写入起始地址。对显示存储器执行自动递增写命令时,8位地址由内部产生,串口只需8位数据,如图3所示。
- 从显示存储器读字符数据时,若处于16位工作模式,应该是24位(8位地址+16位数据)。
执行读操作时,只需要8位地址,如图2所示。
图1. 写操作
图2. 读操作
图3. 自动递增写操作
C程序
下文给出的C程序已针对MAXQ2000微控制器进行了编译,用于MAX7456评估(EV)板。本文给出了完整的程序例程。程序是自述文档,几乎没有附加说明。C程序可从以下文件获得:spi.c和MAX7456.h。
以下程序使用了SPI协议的标准定义,MAXQ2000处理器为SPI主机,MAX7456是SPI从器件。
CS与MAX7456数据资料中的定义相同。
SDIN对应于MOSI (主机出从器件入)。
SDOUT对应于MOSI (主机入从器件出)。
SCLK对应于CK。
前缀SPI_用于全部程序。
数据结构
下文所示数据结构可直接或逐位读写数据,用于独立访问SPI端口。
/* Port 5 Output Register */ __no_init volaTIle __io union { unsigned char PO5; struct { unsigned char bit0 : 1; unsigned char bit1 : 1; unsigned char bit2 : 1; unsigned char bit3 : 1; unsigned char bit4 : 1; unsigned char bit5 : 1; unsigned char bit6 : 1; unsigned char bit7 : 1; } PO5_bit; }
上述代码将一个单字节赋值给PO5,这是微控制器输出端口的地址。然后将另一个字节赋值给相同的可以逐位访问的存储器地址。
因此,可用以下命令直接对该端口进行寻址:
PO5 = 0x10;
或用以下命令逐位读写:
PO5_bit.bit4 = 1;
如果该程序用于其它处理器,该结构需要重新编写。
如果采用不支持位字段宽度的老式C编译器,可用位布尔运算设置及清除位:
/* Portable bit-set and bit-clear macros. */ #define BIT_SET(sfr,bitmask) sfr |= (bitmask) #define BIT_CLR(sfr,bitmask) sfr &=~ (bitmask) #define BIT0 0x01 #define BIT1 0x02 #define BIT2 0x04 #define BIT3 0x08 #define BIT4 0x10 #define BIT5 0x20 #define BIT6 0x40 #define BIT7 0x80 example: BIT_SET(PO5,BIT0); BIT_CLR(PO5,BIT6);
宏
以下是一个简单的编程技巧,使程序更容易移植:用宏定义控制器引脚排列,如下所示。
#define SPI_CS PO5_bit.bit4 // PO5_bit.bit4 = acTIve-low CS—chip select #define SPI_MOSI PO5_bit.bit5 // PO5_bit.bit5 = MOSI—master out slave in, // data to MAX7456 #define SPI_MISO PI5_bit.bit7 // PO5_bit.bit7 = MISO—master in slave out, // data from MAX7456 #define SPI_CK PO5_bit.bit6 // PO5_bit.bit6 = SCK - SPI clock
用以上宏和数据结构可以单独置位及复位每个IO口,命令如下:
SPI_CS = 1;
改变宏时相应引脚也将改变,将上述代码用于其它设计时,如果SPI口引脚排列不同,或为了实现更理想的PCB布局而对引脚进行重新排列,上述程序非常有用。
单字节写操作程序
单字节写操作(图1)程序如下所示。如果可以保证在程序入口处的/CS和CK线状态正确,可以去掉前两条命令。
程序首先发送地址,然后发送数据。进行两次循环。采用单循环及16位数据存储可以简化程序。在MAXQ2000微控制器中执行16位“int”所占用的时间比执行8位“char”长,因此需进行权衡考虑。
/************************************************************************************** * spiWriteReg * * Writes to an 8-bit register with the SPI port **************************************************************************************/ void spiWriteReg(const unsigned char regAddr, const unsigned char regData) { unsigned char SPICount; // Counter used to clock out the data unsigned char SPIData; // Define a data structure for the SPI data SPI_CS = 1; // Make sure we start with acTIve-low CS high SPI_CK = 0; // and CK low SPIData = regAddr; // Preload the data to be sent with Address SPI_CS = 0; // Set acTIve-low CS low to start the SPI cycle // Although SPIData could be implemented as an "int", // resulting in one // loop, the routines run faster when two loops // are implemented with // SPIData implemented as two "char"s. for (SPICount = 0; SPICount < 8; SPICount++) // Prepare to clock out the Address byte { if (SPIData & 0x80) // Check for a 1 SPI_MOSI = 1; // and set the MOSI line appropriately else SPI_MOSI = 0; SPI_CK = 1; // Toggle the clock line SPI_CK = 0; SPIData <<= 1; // Rotate to get the next bit } // and loop back to send the next bit // Repeat for the Data byte SPIData = regData; // Preload the data to be sent with Data for (SPICount = 0; SPICount < 8; SPICount++) { if (SPIData & 0x80) SPI_MOSI = 1; else SPI_MOSI = 0; SPI_CK = 1; SPI_CK = 0; SPIData <<= 1; } SPI_CS = 1; SPI_MOSI = 0; }
读字节操作程序
读字节操作(图2)程序如下所示,与上述程序类似。首先发送地址,然后发送时钟从MISO读回数据。
/************************************************************************************** * spiReadReg * * Reads an 8-bit register with the SPI port. * Data is returned. **************************************************************************************/ unsigned char spiReadReg (const unsigned char regAddr) { unsigned char SPICount; // Counter used to clock out the data unsigned char SPIData; SPI_CS = 1; // Make sure we start with active-low CS high SPI_CK = 0; // and CK low SPIData = regAddr; // Preload the data to be sent with Address and Data SPI_CS = 0; // Set active-low CS low to start the SPI cycle for (SPICount = 0; SPICount < 8; SPICount++) // Prepare to clock out the Address and Data { if (SPIData & 0x80) SPI_MOSI = 1; else SPI_MOSI = 0; SPI_CK = 1; SPI_CK = 0; SPIData <<= 1; } // and loop back to send the next bit SPI_MOSI = 0; // Reset the MOSI data line SPIData = 0; for (SPICount = 0; SPICount < 8; SPICount++) // Prepare to clock in the data to be read { SPIData <<=1; // Rotate the data SPI_CK = 1; // Raise the clock to clock the data out of the MAX7456 SPIData += SPI_MISO; // Read the data bit SPI_CK = 0; // Drop the clock ready for the next bit } // and loop back SPI_CS = 1; // Raise CS return ((unsigned char)SPIData); // Finally return the read data }
自动递增模式下的写字节操作程序
自动递增模式下的写字节操作(图3)程序如下所示,与和上述单字节写程序类似。首先发送地址,然后发送时钟从MISO读回数据。
/************************************************************************************** * spiWriteRegAutoIncr * * Writes to an 8-bit register with the SPI port using the MAX7456's autoincrement mode **************************************************************************************/ void spiWriteRegAutoIncr(const unsigned char regData) { unsigned char SPICount; // Counter used to clock out the data unsigned char SPIData; // Define a data structure for the SPI data. SPI_CS = 1; // Make sure we start with active-low CS high SPI_CK = 0; // and CK low SPIData = regData; // Preload the data to be sent with Address and Data SPI_CS = 0; // Set active-low CS low to start the SPI cycle for (SPICount = 0; SPICount < 8; SPICount++) // Prepare to clock out the Address and Data { if (SPIData & 0x80) SPI_MOSI = 1; else SPI_MOSI = 0; SPI_CK = 1; SPI_CK = 0; SPIData <<= 1; } // and loop back to send the next bit SPI_MOSI = 0; // Reset the MOSI data line }
自动递增模式下写显示存储器的程序
自动递增模式下写显示存储器的程序如下,程序使用称为 "data"的全局变量数组。定义如下:
extern volatile unsigned char data[DATA_BUF_LENGTH]; DATA_BUF_LENGTH = 968
调用程序时,data[]包含显示存储器内容,格式如下:
data[0] = ignored (contains a command byte used by the EV kit GUI software) data[1] = character byte 1 data[2] = attribute byte 1 data[3] = character byte 2 data[4] = attribute byte 2 etc.
自动递增模式通过写0xFF结束,所以该模式下不能向显示寄存器写0xFF。如果需要写OxFF,可以采用单字节写指令。
/************************************************************************************** * spiWriteCM * * Writes to the Display Memory (960 bytes) from "data" extern. * 960 = 16 rows × 30 columns × 2 planes {char vs. attr} screen-position-indexed memory **************************************************************************************/ void spiWriteCM() // On entry: global data[1..960] // contains char+attr bytes // (optionally terminated by 0xFF data) // First, write data[1,3,5,...] Character plane; // MAX7456 WriteReg(0x05,0x41) // "Character Memory Address High"; // 0x02:Attribute bytes; // 0x01:character memory address msb { volatile unsigned int Index = 0x0001; // Index for lookup into // data[1..960] spiWriteReg(DM_ADDRH_WRITE,0x00); // initialise the Display Memory high-byte spiWriteReg(DM_ADDRL_WRITE,0x00); // and the low-byte spiWriteReg(DM_MODE_WRITE ,0x41); // MAX7456 WriteReg(0x04,0x41) "Display Memory Mode"; // 0x40:Perform 8-bit operation; 0x01:AutoIncrement Do // Loop to write the character data { if (data[Index] == 0xFF) { // Check for the break character break; } // and finish if found spiWriteRegAutoIncr(data[Index]); // Write the character Index += 2; // Increment the index to the next character, // skipping over the attribute } while(Index < 0x03C1); // 0x03C1 = 961 // and loop back to send the next character spiWriteRegAutoIncr(0xFF); // Write the "escape character" to end AutoIncrement // mode spiWriteReg(DM_ADDRH_WRITE,0x02); // Second, write data[2,4,6,...] // Attribute plane; MAX7456 // WriteReg(0x05,0x41) // "Character Memory Address High"; // 0x02:Attribute bytes; 0x01:character memory address // msb spiWriteReg(DM_ADDRL_WRITE,0x00); spiWriteReg(DM_MODE_WRITE,0x41); // MAX7456 WriteReg(0x04,0x41) "Character Memory // Mode"; 0x40:Perform 8-bit operation; 0x01:Auto- // Increment Index = 0x0002; do { if (data[Index] == 0xFF) break; spiWriteRegAutoIncr(data[Index]); Index += 2; } while(Index < 0x03C1); spiWriteRegAutoIncr(0xFF); }
写字符存储器程序
向字符存储器写一个字符的程序如下,每个字符占用18行,每行12像素,共216像素。由于每个字节定义4个像素,因此定义每一个字符需要54字节。字符数据位于程序入口处的data[] (与上述写显示存储器的程序类似)。
写字符存储器时需要进行一些附加说明,存储器为非易失,因此,写存储器大约需要12ms,由MAX7456执行。只有完整的54字节字符才可以写入字符存储器。
该器件包含一个54字节映射存储器。首先把需要写入的字符数据写入映射存储器,然后器件将该数据装载到NVM字符存储器。
用来写字符存储器的寄存器有以下几种:
- 字符存储器模式 = 0x08。向寄存器写0xA0,使器件把映射存储器的内容装载到NVM字符存储器。
- 字符存储器地址高位 = 0x09。包括了即将写入字符的地址。
- 字符存储器地址低位 = 0x0A。
- 字符存储器数据输入 = 0x0B。
- Status = 0xA0,读取该寄存器以决定何时可以写入字符存储器。
在程序入口处,data[1]包括即将写入字符的地址,data[2...54]包括字符数据。
向NVM字符存储器写字符时,首先写字符地址。然后将每个字节写入映射存储器。写映射存储器时没有自动递增模式,所以每次写操作必须写入映射存储器地址。向字符存储器模式寄存器写0xA0,可以把映射存储器的内容装载到NVM字符存储器。然后器件将状态寄存器第5位置高,表明不能写入字符存储器。完成后,器件将该位复位至低。数据从映射存储器移向字符存储器时不能写映射存储器。
为了避免出现显示器闪烁,在写字符存储器之前程序禁止了OSD。
/************************************************************************************** * spiWriteFM * * Writes to the Character Memory (54 bytes) from "data" extern **************************************************************************************/ void spiWriteFM() { unsigned char Index; spiWriteReg(VIDEO_MODE_0_WRITE,spiReadReg (VIDEO_MODE_0_READ) & 0xF7); // Clear bit 0x08 to DISABLE the OSD display spiWriteReg(FM_ADDRH_WRITE,data[1]); // Write the address of the character to be written // MAX7456 glyph tile definition // length = 0x36 = 54 bytes // MAX7456 64-byte Shadow RAM accessed // through FM_DATA_.. FM_ADDR.. contains a single // character/glyph-tile shape for(Index = 0x00; Index < 0x36; Index++) { spiWriteReg(FM_ADDRL_WRITE,Index); // Write the address within the shadow RAM spiWriteReg(FM_DATA_IN_WRITE,data[Index + 2]); // Write the data to the shadow RAM } spiWriteReg(FM_MODE_WRITE, 0xA0); // MAX7456 "Font Memory Mode" write 0xA0 triggers // copy from 64-byte Shadow RAM to NV array. while ((spiReadReg(STATUS_READ) & 0x20) != 0x00); // Wait while NV Memory status is BUSY // MAX7456 0xA0 status bit 0x20: NV Memory Status // Busy/~Ready }
MAX7456头文件
下面列出了MAX7456的头文件,以下代码决定了器件的寄存器映射。
/************************************************************************************** * spiWriteRegAutoIncr * * Writes to an 8-bit register with the SPI port by using the MAX7456's autoincrement mode **************************************************************************************/ // MAX7456 VIDEO_MODE_0 register #define VIDEO_MODE_0_WRITE 0x00 #define VIDEO_MODE_0_READ 0x80 #define VIDEO_MODE_0_40_PAL 0x40 #define VIDEO_MODE_0_20_NoAutoSync 0x20 #define VIDEO_MODE_0_10_SyncInt 0x10 #define VIDEO_MODE_0_08_EnOSD 0x08 #define VIDEO_MODE_0_04_UpdateVsync 0x04 #define VIDEO_MODE_0_02_Reset 0x02 #define VIDEO_MODE_0_01_EnVideo 0x01 // VIDEO MODE 0 bitmap #define NTSC 0x00 #define PAL 0x40 #define AUTO_SYNC 0x00 #define EXT_SYNC 0x20 #define INT_SYNC 0x30 #define OSD_EN 0x08 #define VERT_SYNC_IMM 0x00 #define VERT_SYNC_VSYNC 0x04 #define SW_RESET 0x02 #define BUF_EN 0x00 #define BUF_DI 0x01 // MAX7456 VIDEO_MODE_1 register #define VIDEO_MODE_1_WRITE 0x01 #define VIDEO_MODE_1_READ 0x81 // MAX7456 DM_MODE register #define DM_MODE_WRITE 0x04 #define DM_MODE_READ 0x84 // MAX7456 DM_ADDRH register #define DM_ADDRH_WRITE 0x05 #define DM_ADDRH_READ 0x85 // MAX7456 DM_ADDRL register #define DM_ADDRL_WRITE 0x06 #define DM_ADDRL_READ 0x87 // MAX7456 DM_CODE_IN register #define DM_CODE_IN_WRITE 0x07 #define DM_CODE_IN_READ 0x87 // MAX7456 DM_CODE_OUT register #define DM_CODE_OUT_READ 0xB0 // MAX7456 FM_MODE register #define FM_MODE_WRITE 0x08 #define FM_MODE_READ 0x88 // MAX7456 FM_ADDRH register #define FM_ADDRH_WRITE 0x09 #define FM_ADDRH_READ 0x89 // MAX7456 FM_ADDRL register #define FM_ADDRL_WRITE 0x0A #define FM_ADDRL_READ 0x8A // MAX7456 FM_DATA_IN register #define FM_DATA_IN_WRITE 0x0B #define FM_DATA_IN_READ 0x8B // MAX7456 FM_DATA_OUT register #define FM_DATA_OUT_READ 0xC0 // MAX7456 STATUS register #define STATUS_READ 0xA0 #define STATUS_40_RESET_BUSY 0x40 #define STATUS_20_NVRAM_BUSY 0x20 #define STATUS_04_LOSS_OF_SYNC 0x04 #define STATUS_02_PAL_DETECTED 0x02 #define STATUS_01_NTSC_DETECTED 0x01 // MAX7456 requires clearing OSD Black Level // register bit 0x10 after reset #define OSDBL_WR 0x6C #define OSDBL_RD 0xEC #define OSDBL_10_DisableAutoBlackLevel 0x10
结论和性能
MAX7456评估板采用工作在20MHz时钟的MAXQ2000微控制器,该微控制器包含内部硬件SPI控制器。因此,MAX7456的SPI端口可以全速工作。上述软件SPI程序工作速度低于硬件控制器。不过针对客户缺少硬件SPI端口的工作环境,程序已优化至最简。