您现在的位置是:首页 > 快讯

5G时代氮化镓的优势到底有多明显

2020-03-17 12:35:04

氮化镓(GaN)被誉为继第一代Ge、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料,具有带隙宽、原子键强、导热率高、化学性能稳定、抗辐照能力强、结构类似纤锌矿、硬度很高等特点,在光电子、高温大功率器件和高频微波器件应用等方面有着广阔的应用前景。

5G时代氮化镓的优势到底有多明显

5G时代,第三代半导体优势明显

第一代半导体材料主要是指硅(Si)、锗(Ge)元素半导体。它们在国际信息产业技术中的各类分立器件和集成电路、电子信息网络工程等领域得到了极为广泛的应用。

第二代半导体材料是指化合物半导体材料,如砷化镓(GaAs)、锑化铟(InSb)、磷化铟(InP),以及三元化合物半导体材料,如铝砷化镓(GaAsAl)、磷砷化镓(GaAsP)等。还有一些固溶体半导体材料,如锗硅(Ge-Si)、砷化镓-磷化镓(GaAs-GaP)等;玻璃半导体(又称非晶态半导体)材料,如非晶硅、玻璃态氧化物半导体等;有机半导体材料,如酞菁、酞菁铜、聚丙烯腈等。第二代半导体材料主要用于制作高速、高频、大功率以及发光电子器件,是制作高性能微波、毫米波器件及发光器件的优良材料。

第三代半导体材料主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带(禁带宽度 Eg》2.3eV)的半导体材料。

宽禁带半导体是高温、高频、抗辐射及大功率器件的适合材料。与第一代和第二代半导体材料相比,第三 代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更大的电子饱和速度以及更高的抗辐射 能力,更适合制作高温、高频、抗辐射及大功率器件。从目前第三代半导体材料及器件的研究来看,较为成熟 的第三代半导体材料是SiC和GaN,而ZnO、金刚石、氮化铝等第三代半导体材料的研究尚属起步阶段。

靠快充火起来的氮化镓

作为第三代半导体材料的氮化镓(GaN),是一种坚硬的高熔点(熔点约为1700℃)材料,具有高频、高效率、耐高压等特性,用于制作多种功率器件和芯片。

氮化镓在半导体材料领域的研究已经持续多年,近期广为人知,是因为它可以用在充电器中。

今年2月,小米发布新品,其中65W GaN充电器成为一大亮点。

这款充电器易散热、充电快(比iphone原装快50%,从0到100%的电量只需45分钟)、体积小(比常规充电器小了50%),且售价只要149元,性价比较高。3天预约就超5万,一时间,这一黑科技产品站上了风口,氮化镓也因此引发市场的强烈关注。

不过这并不是第一款氮化镓充电器,早在去年四季度,OPPO就发布了全球首款65W GaN充电器。两家大厂相继布局,意味着技术已经进一步成熟。

而且,氮化镓充电器并不仅仅用于手机充电。更小、更便捷的GaN充电器是解放笔记本的一大利器。未来,笔记本、新能源车或许都会用到氮化镓充电器。

5G带来更广阔的应用空间

充电市场并非氮化镓功率器件的唯一用武之地,它还应用于光电、射频领域。

非常值得一提的是,在射频领域,氮化镓射频器件适合高频高功率场景,是5G时代的绝佳产品,将替代Si基芯片,应用在5G基站、卫星通信、军用雷达等场景。

在政治局会议多次点名之下,5G基站的建设迎来高峰,相应的各种射频器件、芯片数量和质量都在提升,市场需求旺盛。氮化镓工艺正在逐步占领市场,已经势不可挡。拓璞产业研究院预计到2023年基站端GaN射频器件规模达到顶峰,达到112.6亿元。

再加上卫星通信、军用雷达的市场,据预测GaN射频市场将从2018年的6.45亿美元增长到2024年的约20亿美元。

另外,GaN基紫外激光器在紫外光固化、紫外杀菌等领域有重要的应用价值。疫情当前,中美都启用了基于GaN的紫外光进行消毒杀菌,相关市场随之增长。
? ? ? ?责任编辑:wv